Main Article Content

Nunu Kustian
Siti Julaeha
Khusnul Khotimah

Abstract

Student dropout continues to pose a critical challenge that hinders educational equality and long term human capital development. This study aims to predict dropout risk by employing attendance records and parental occupation as the main indicators. A synthetic dataset reflecting Indonesian school conditions was analyzed using the Decision Tree algorithm. The results demonstrate that the model achieved strong predictive capability, reaching 87% accuracy with well balanced precision and recall values. Further analysis highlights absenteeism as the most decisive factor influencing dropout risk. In addition, parental occupation emerges as a contextual determinant that strengthens risk identification, with students whose parents are engaged in informal or unstable sectors being more vulnerable compared to peers from households with stable formal employment. The transparent structure of the Decision Tree enhances its practical value for educational practitioners, as it translates complex data into insights that are both actionable and accessible.  While the findings are based on simulated data, the study underscores the importance of integrating behavioral and socioeconomic indicators into early detection frameworks  for student dropout.

Article Details

References
Abdah Syakiroh Gustian, & Fathoni Mahardika. (2025). Analisis Klasifikasi Risiko Dropout Mahasiswa Menggunakan Algoritma Decision Tree dan Random Forest. Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro Dan Informatika, 3(4), 182–189. https://doi.org/10.61132/jupiter.v3i4.980
Elbouknify, I., Berrada, I., Mekouar, L., Iraqi, Y., Bergou, E. H., Belhabib, H., Nail, Y., & Wardi, S. (2025). AI-based identification and support of at-risk students: A case study of the Moroccan education system. https://doi.org/https://doi.org/10.48550/arXiv.2504.07160
Gottfried, M. A. (2014). Chronic Absenteeism and Its Effects on Students’ Academic and Socioemotional Outcomes. Journal of Education for Students Placed at Risk (JESPAR), 19(2), 53–75. https://doi.org/10.1080/10824669.2014.962696
Kabra, R. R., & Raisoni, G. H. (2011). Performance Prediction of Engineering Students using Decision Trees. In International Journal of Computer Applications (Vol. 36, Issue 11). https://doi.org/10.5120/4532-6414
Kaffenberger, M., Sobol, D., & Spindelman, D. (2021). The Role of Low Learning in Driving Dropout: A Longitudinal Mixed Methods Study in Four Countries. https://doi.org/10.35489/BSG-RISE-WP_2021/070
Kotsiantis, S. B. (2012). Use of machine learning techniques for educational proposes: a decision support system for forecasting students’ grades. Artificial Intelligence Review, 37(4), 331–344. https://doi.org/10.1007/s10462-011-9234-x
Ou, S. R., & Reynolds, A. J. (2008). Predictors of Educational Attainment in the Chicago Longitudinal Study. School Psychology Quarterly, 23(2), 199–229. https://doi.org/10.1037/1045-3830.23.2.199
Psyridou, M., Prezja, F., Torppa, M., Lerkkanen, M. K., Poikkeus, A. M., & Vasalampi, K. (2024). Machine learning predicts upper secondary education dropout as early as the end of primary school. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-63629-0
Putra, L. G. R., Prasetya, D. D., & Mayadi, M. (2025). Student Dropout Prediction Using Random Forest and XGBoost Method. INTENSIF: Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem Informasi, 9(1), 147–157. https://doi.org/10.29407/intensif.v9i1.21191
Romero, S., & Liao, X. (2025). Statistical and machine learning models for predicting university dropout and scholarship impact. PLOS ONE, 20(6 June). https://doi.org/10.1371/journal.pone.0325047
Ross Quinlan, by J., Kaufmann Publishers, M., & Salzberg, S. L. (1994). Programs for Machine Learning (Vol. 16).
Rumberger, R. W. (2001). Why Students Drop Out of School and What Can be Done. https://escholarship.org/uc/item/58p2c3wp
Tajriah, S., Goretty Djandon, M., & Sulaiman, H. (2022). Motif Anak Putus Sekolah Yang Bekerja Pada Sektor Informal (Studi Kasus) di Kelurahan Ekasapta Kecamatan Larantuka Kabupaten Flores Timur. 58–74. https://doi.org/https://doi.org/10.37478/sajaratun.v7i2
Utomo, A., Reimondos, A., Utomo, I., McDonald, P., & Hull, T. H. (2014). What happens after you drop out? Transition to adulthood among early school-leavers in urban Indonesia. Demographic Research, 30(1), 1189–1218. https://doi.org/10.4054/DemRes.2014.30.41