Main Article Content

Nur Witdi Yanto
Heru Sukoco
Shelvie Nidya Neyman

Abstract

Penggunaan internet untuk mengakses situs-situs tertentu yang tidak berhubungan dengan pekerjaan dibatasi akses nya oleh perusahaan atau organisasi. Perusahaan atau organisasi melakukan pemblokiran untuk tujuan mengamankan jaringan mereka terhadap ancaman virus, spyware, hacker dan ancaman lainnya yang dapat merugikan perusahaan dengan cara menerapkan firewall, filter URL serta sistem deteksi intrusi. Namun, pengamanan tersebut masih dapat ditembus dengan menggunakan layanan proxy anonim. Penggunaan proxy anonim memungkinkan user untuk melakukan bypass sebagian besar sistem penyaringan. Dalam penelitian ini, data proxy anonim diperoleh dengan cara menangkap (capture) paket data menggunakan aplikasi wireshark. Data tersebut dimodelkan dengan algoritme expectation maximization sehingga diperoleh akurasi model sebesar 71.22% pada pembagian data yang seimbang. Hasil ini menunjukkan bahwa model mampu mengenali penggunaan proxy anonim pada traffic internet.

Downloads

Download data is not yet available.

Article Details

References
Alshammari R, Zincir-Heywood AN. 2011. Can encrypted traffic be identified without port numbers, IP addresses and payload inspection? Comput Networks. 55(6):1326–1350. doi:10.1016/j.comnet.2010.12.002.

Bar-Yanai R, Langberg M, Peleg D, Roditty L. 2010. Realtime classification for encrypted traffic. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 6049 LNCS(46109):373–385. doi:10.1007/978-3-642-13193-6_32.

Bing L. 2009. Web Data Mining Exploring Hyperlinks, Contents, and Usage Data. Second Edi. (NY): Springer Heidelberg Dordrecht London New York.

Brozycki J. 2008. Detecting and preventing anonymous proxy usage. SANS Inst.

Cha S, Kim H. 2017. Detecting encrypted traffic: A machine learning approach. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 10144 LNCS:54–65. doi:10.1007/978-3-319-56549-1_5.

Chakravarty S, Portokalidis G, Polychronakis M, Keromytis AD. 2015. Detection and analysis of eavesdropping in anonymous communication networks. Int J Inf Secur. 14(3):205–220. doi:10.1007/s10207-014-0256-7.

Dempster AP, Laird NM, Rubin DB. 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm. J R Stat Soc. 39(1):1–38. doi:10.1177/019262339101900314.

Erman J, Mahanti A, Arlitt M. 2006. Internet traffic identification using machine learning. GLOBECOM - IEEE Glob Telecommun Conf. doi:10.1109/GLOCOM.2006.443.

Fashoto SG, Adekoya A, Owolabi O, Tomori R, Ogunleye O, Adediran S. 2016. Development of an identity management system for a web proxy server in a tertiary institution using anonymity technology. Int J Phys Sci. 11(13):157–167. doi:10.5897/ijps2016.4482.

Fielding R, Gettys J, Mogul JC, Frystyk H, Masinter L, Leach P, Berners-Lee T. 1999. Hypertext Transfer Protocol -- HTTP/1.1.

Galar M, Fernandez A, Barrenechea E, Bustince H. 2011. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. Inst Electr Electron Eng.:1–22. doi:10.1109/TSMCC.2011.2161285.

Gorunescu F. 2011. Data Mining Concepts, Models and Techniques. Springer-Verlag Berlin Heidelberg.

Gulyás G, Schulcz R, Imre S. 2008. Comprehensive analysis of Web privacy and anonymous Web browsers: Are next generation services based on collaborative filtering? CEUR Workshop Proc. 362.

Han J, Kamber M, Pei J. 2012. Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems). Third. Morgan Kaufmann.

Hu Z. 2015. Initializing the EM Algorithm for Data Clustering and Sub-population Detection.
Kohavi R, John GH. 1997. Wrappers for feature subset selection. Artif Intell. 97:273–324.

Kursa MB, Rudnicki WR. 2010. Feature Selection with the Boruta Package. J Stat Softw. 36(11).
Law AM, Kelton DW. 1991. Simulation Modelling & Analysis. (NY): McGraw-Hill, Inc.

Mc Keague J. 2013. Detecting Anonymous Proxy Usage. University of Ulster at Magee.

McGregor A, Hall M, Lorier P, Brunskill J. 2004. Flow Clustering Using Machine Learning Techniques. :205–214. doi:10.1007/978-3-540-24668-8_21.

Mckeague J, Curran K. 2018. Detecting the Use of Anonymous Proxies. Int J Digit Crime Forensics. 10(2). doi:10.4018/IJDCF.2018040105.

Miller S, Curran K, Lunney T. 2015. Securing the internet through the detection of anonymous proxy usage . World Congr Internet Secur.

Miller S, Curran K, Lunney T. 2016. Traffic Classification for the Detection of Anonymous Web Proxy Routing. Int J Inf Secur Res. 5(1):538–545. doi:10.20533/ijisr.2042.4639.2015.0061.

Neto MÂS. 2013. Traffic Classification Based on Statistical Tests for Matching Empirical Distributions of Lengths of IP packets.

Rezaei S, Liu X. 2019. Deep Learning for Encrypted Traffic Classification: An Overview. IEEE Commun Mag. 57(5):76–81. doi:10.1109/MCOM.2019.1800819.

Siringoringo R. 2018. Klasifikasi Data Tidak Seimbang Menggunakan Algoritma SMOTE dan k-Nearest Neighbor. J ISD. 3(1):44–49.

Safuan, Wahono RS, Supriyanto C. 2015. Penanganan Fitur Kontinyu dengan Feature Discretization Berbasis Expectation Maximization Clustering untuk Klasifikasi Spam Email Menggunakan Algoritma ID3. J Intell Syst. 1(2):148–155.

Syukron A, Subekti A. 2018. Penerapan Metode Random Over-Under Sampling dan Random Forest Untuk Klasifikasi Penilaian Kredit. J Inform. 5(2):175–185. doi:10.31311/ji.v5i2.4158.

Yengi YK, Karayel M, Omurca Sİ. 2015. An Alternative Method for Sentiment Classification with Expectation Maximization and Priority Aging. Int J Sci Res Inf Syst Eng. 1(2):91–96.

Suherman, M., Wijoyo, H., & Indrawan, I. (2020). INDUSTRY 4.0 vs SOCIETY 5.0.

Suci, I. G. S., Suyanta, I. W., Darna, I. W., Wijoyo, H., & Setyawati, E. (2020). A Measure Of Effectiveness Level Of Online Learning Amid Covid-19 Pandemic In The Course Of The Project Management Information Systems (Case Study In STIKOM Yos Sudarso Purwokerto). Journal of Critical Reviews, 7(12), 4059-4069.

Setyawati, E., Wijoyo, H., & Soeharmoko, N. (2020). Relational Database Management System (RDBMS).